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ABSTRACT 
In this paper, a new nonlinear parameter estimation 
method for a noncausal autoregessive (AR) system 
based on a new quadratic equation relating the un- 
known AR parameters to higher-order (2 3) cumulants 
of non-Gaussian output measurements in the presence 
of additive Gaussian noise. It is applicable no matter 
whether or not the order of the system is known in ad- 
vance; it is also applicable for the case of causal AR 
system. Some simulation results are offered to  justify 
that the proposed method is effective. 

1. INTRODUCTION 

Autoregressive (AR) system identification with only 
output measurements is a well-defined problem in var- 
ious science and engineering areas such as spectral es- 
timation, speech processing, seismology, sonar, radar, 
radio astronomy, biomedicine, image processing, vibr a- 
tion analysis and oceanography. Although most of ex- 
isting AR parameter estimation methods assume that 
the unknown AR model is causal stable, there are some 
cases that the underlying signal generation model is 
noncausal, which can be found in such as astronomi- 
cal signal processing, image processing and geophysical 
signal processing. 

A known fact is that correlation based AR parame- 
ter estimation methods such as the existing AR spectral 
estimators are inherently phase blind and sensitive to 
additive noise no matter whether the signal of interest 
is Gaussian or not. Recently, signal processing with 
higher-order statistics, known as cumulants, has drawn 
extensive attention because cumulants can be used to 
extract not only the amplitude information but also the 
phase information of non-Gaussian signals and they are 
totally zero for Gaussian processes. 

Various cumulant based AR parameter estimation 
methods have been reported in the open literature. 
Most of them such as [1-6] are only applicable in 
the case of causal stable AR model; nevertheless 
some cumulant based approaches have been proposed 
to identify a noncausal AR model, denoted l/A(z). 
For instance, lhgnait’s exhaustive search method [7] 
and minimum phase- allpass (MP-AP decomposition 
based method [8] and Huzii’s method [ B ] begin with the 

estimation of the spectrally equivalent (SE) minimum- 
phase system &p(z) by correlation based AR param- 
eter esti-tion methods. From the set of all AR models 
SE to  l/AMp(z), the exhaustive search method deter- 
mines the noncausal l/A(z) to be the candidate whose 
output cumulants match the corresponding sample cu- 
mulants best. For Huzii’s method and the MP-AP 
decomposition based method, the given-non-Gaussian 
data z(k) are processed by the filter AWP(Z) to ob- 
tain an innovations process G(k) and the desired non- 
causal system l/A(z) is then determined from cumu- 
lants of : ( le) .  Tugnait [7] also proposed an optimization 
method by minimizing a cost function formed of the 
squared errors between theoretical output correlations 
as well as cumulants and the corresponding sample cor- 
relations as well as sample cumulants. Giannakis [lo] 
proposed a method which converts the noncausal AR 
parameter estimation problem into a causal moving av- 
erage (MA) parameter estimation problem. 

In this paper, we propose a new parameter estima- 
tion method for a noncausal AR system l/A(z) based 
on a new quadratic equation relating the unknown 
AR parameters to cumulants of data: The proposed 
method finds the optimal estimate l/A(z) through an 
iterative numerical optimization algorithm; it is appli- 
cable no matter whether or not the order of l/A(z) is 
known in advance; it is also applicable for the case of 
causal AR model. 

2. A NEW CUMULANT BASED 
PARAMETER ESTIMATION METHOD 

FOR NONCAUSAL AR SYSTEMS 

Assume that z(k) are the given noisy output measure- 
ments generated from a noncausal stable AR model as 
follows: 

Pa 

a( i ) y (k  - i) = u ( k )  (1) 

(‘4 
,=- PI 

.(le) = Y(k) + 4 k )  

where u(k) is a real, zero-mean, independent identically 
distributed (i.i.d.) non-Gaussian process with Mth- 
order cumulant 7~ # 0 and w(k is Gaussian with un- 
known statistics. The pth-order &I = p ~ + p z )  noncausal 
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AR system has a trmsfer function H ( z )  = l / A ( t i  
where 

P I  

A(z)  = a(k)z- '  = A i ( t ) .  A ~ ( z )  (3) 

is aplth-order polynomial of z with all the roots outside 
the unit circle (the anticausal part tof A@))  and 

A z ( 2 )  = a z ( 0 )  + ~ a ( l ) z - '  + . . . -t a z ( p z ) ~ - ~ '  (51 
is a pzth-order polynomial of z-' with all the roots 
inside the unit circle (the causal part of A ( z ) ) .  Notc. 
that correlation based AR spectral estimation methods 
can only provide an estimate of the SE minimum-phasc. 
A ~ p ( z )  given by 

A M P ( Z )  = AI(z- ')  . A ~ ( z )  (6'1 
except for a srale factor 

Let C M , ~ ( ~ ~ , ,  I C z , .  . . , k M - l )  denote the Mth-order 
cumulant function of the non-Gaussian stationary pro- 
tess z ( k ) .  It can shown t.hat 

' = - P I  ,=-p, 

= a'C(k)a = yMh'!"-'(0)6(~) (7) 

where h ( k  is the inipulse response of the noncausal AR 
system, 6:k) is the Kronecker delta function, 

a = ( a ( - P 1 ) ,  "(-PI + l ) ,  . . , a(p2)) '  (8'1 

and C(k) is a (p + 1) x ( p  + 1) matrix whose ( i , j ) th  
component is given by 

[C(k)],,j = C M , ~ ( ~ :  +pi - j + l , p L  - i+ 1 , 0 ,  . . . , 0). (9) 

Assuming that 21; and p i  are chosen for pl and p z ,  
respectively, the proposed method searches for the op- 
timum a by minimizing a cost function of either J = J1 
o r  J = d z  Ihrough an iterative numcrical optimizat,ion 
allgorilhm where 

and 

in which e ( k )  IS a150 a ( p  + 1 x ( p  + 1) matrix b j  
replacing each componcnt of Cok) with the associated 
Mth-order sample cumulant Some worthy remarks re- 
garding the proposed AR parameter estimation method 
are summarized as follows 

(R1) The proposed AR parameter estima.tion method 
is a single-step nonlinear optimization algo- 
rithm to  fit the key quadratic equat,ion given by 
(7) with Mth-order sample cumulants of non- 
Gaussian measurements such that either J1 or J z  
is minimum. It relies on neither the SE A ~ p ( z )  
as exhaustive search methods [7,9] and the MP- 
AP decomposition based method [8] nor any con- 
version procedure as in Giannakis' method [lo]. 
However, the optimum solution for a is not re- 
solvable to a scale factor since JI(a) = Jl(ba) 
and Jz(a) = dz(ba) for any b # 0. 

(R.2)  When p l  and pa are known in advance, the pro- 
posed method works well while the objective 
function J Z  is preferred to JI due to its less sen- 
sitivity to initial conditions for a by our  experi- 
ence. 

(R.3) When p i  # , PI and p i  # PZ, but p {  + p i  = 
pi + pz = p is known, the optimum A ( z )  turns 
out 1,o be an sstimate A ( z )  = a A ( z )  . z-' 
wherc r = pl - p; = p i  - pz because cumu- 
lants are blind to time delay factors. However, 
a'c(O)a = - y ~ [ h ( O ) ] ~ - ~  l t h e  denominator of 
J i )  could equal zero since h ( k )  ( l / a ) h ( k  + r )  
and therefore J z  is.preferred to J1 for this case. 

(R4) When none of pl , pz and p are known o. priori, 
the optimum estimate Â (*) with p i  2 p l  and 
p i  2 p z  turns out to be an estimate of a A ( t ) , z - r  
where pi - p; 5 r 5 p i  - p z .  However, we em- 
pirically found that the proposed method asso- 
ciated with - J1 always provides an optimum es- 
timat.e A ( z )  Z a A ( z )  for noncausal AR systems 
with mazlh(k)l = Ih(0)l. The reason for this is 
that the minimum value of J1 for r I= 0 is always 
smaller than t&at for T # 0 because the value of 
a'k(0)a = - y ~ ( 1 ( r ) ~ - '  for r = 0 is larger than 
that for r # 0 in absolute value. 

(R5) The proposed AR parameter estimation method 
is applicable for both causal and noncausal AR 
systems as long as Y M  # 0 for any M 2 3 be- 
cause the causal AR(p) model is nothing but a 
special case of noncausal AR model for p l  = 0 
and pz = p. 

Next, let us show some simulation results to  support 
the proposed parameter estimation method for non- 
causal AR systems. 

3. SIMULATION EXAMPLES 

In the simulation, the driving input u(k) used was a 
zero-mean Exponentially distributed i.i.d. sequence, 
data +(k) of length N = 1024 were generated for three 
different signal-to-noise ratios ( S N R )  (10, 50 and 100) 
with w ( k )  being white Gaussian. Mean and standard 
deviation were calculated from thirty independent esti- 
mates of A^(z) with E,, g 2 ( k )  = u 2 ( k )  := 1 obtained 
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by the proposed method with cumulant order M = 3 
and K = 15 in J1 and J z .  

Example 1. (pi, pz) = (3,2) are known U priori. 

A ( 2 )  = - 0 . 2 0 7 1 ~ ~  + 0.36592’ - 0.52472 
+0.6317 - 0.34522-’ + 0.17262-’ (12) 

The objective function JZ with p; =, p1 and p; = pz 
was used for this example and the simulation results 
together with the true fifth-order noncausal AR pa- 
rameters are shown inTable l .  One can see, from this 
table, that estimates A(%) approximate the true A(t)  
well. 

(pl,pz) = (2,O) are unknown but Example 2. 
p = pl + pz = 2 is known. 

A(z) = 0.62712’ + 0.34841 + 0.6967 (13) 

The objective function JZ with pi = 0 and p; = 2 
was used for this example and the simulation results 
together with the true second-order anticausal AR pa- 
rameters are shown in Table 2. From this table, one can 
see that estimates ;(le , L = 0, 1, 2, are quite close to 
the true parameters a(L - 2), k = 0, 1, 2, res ectively. 
These simulation results are consistent with (!R3). 

None of p1 = 2, pz = 0 and p are 
known. The same A ( z )  given by (13) was used in 
this example. The objective function J1 with pi = 2 
(2. pl = 2) and p’ = 2 (2. pz = 0) was used and the 
simulation results together with the true second-order 
anticausal AR parameters are shown in Table 3. Note 
that h ( k )  = 0 for k > 0 and maz)h(L)) = Ih(0)l = 1 
for this case. From Table 3, one can see that estimates 
Z(-2), Z(-1) and Z(0) are quite close to u(-2), a(-1 

zero. These simulation results also justify the state- 
ments presented in (R4). 

Example 3. 

and Q(O), respectively, and Z(1) and Z(2) are aroun d 

4. CONCLUSIONS 

We have presented a new cumulant based parameter 
estimation method for noncausal AR systems based on 
a new quadratic equation given by (7). The proposed 
method is a nonlinear estimation algorithm minimizing 
either J1 given by (10) or JZ given by ( l l ) ,  and the 
unknown pth-order AR noncausal system l/A(z) where 
A(2)  is given by (3) can be estimated except for a scale 
factor (see (Rl)). When both p1 and pz are known, 
JZ is preferred to J1 (see (M)), otherwise an unknown 
time delay may exist in the estimated A(r ) ;  when p = 
p1 +pz is known but p1 and pz are not known, Jz  is also 
preferred to J1 (see (R3)); when none of pl ,  pz and p are 
known, J1 is preferred to  J z  with pi 2 p1 and p’ > pz 
(see (R4)). The proposed method is also appl icakfor  
the case of causal AR model (see (R5)). Finally, three 
simulation examples were provided to justify that the 
proposed AR parameter estimation method is effective. 
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Table 1. Simulation results of Example 1 
Objective function: J = Jz 

True (normalized) AR parameters: U(-3) = -0.2071, 
p ;  = p1 = 3, p'z = p2 = 2 

a(-2) = 0.3659, U(-1) = -0.5247, ~ ( 0 )  = 0.6317, 
~ ( 1 )  = -0.3452, ~ ( 2 )  = 0.1726 

Estimated AR Darameters imeanfstandard deviation) 

&( -3) 
i( -2) 
i( -1) 
i ( 0 )  

i(2) 
i( 1 ) 

SNR=lOO SNR=50 
-0.21 19f0.0170 -0.2143f0.0183 

0.3632f0.0132 0.3608f0.0155 
-0.5239f0.0121 -0.5212f0.0142 

0.6330f0.0112 0.637040.0127 

0.1720f0.0149 0.171lf0.0167 
-0.3423f0.0174 -0.3400f0.0215 

SNR=10 

0.3131f0.0768 

0.6910f0.0575 

0.1548f0.0326 

-0.2611f0.0587 

-0.4710f0.0670 

-0.2946f0.0734 

&( -1) 
i(0) 
i ( 1 )  
i(2) 

Table 2. Simulation results of Example 2 

'True (normalized) AR parameters: U(-2) = 0.6271, 

0.3339f0.0391 
0.6930f0.0313 

-0.01 34f0.0565 
-0.0022f0.0567 

SNR=SO SNR=10 
0.6307f0.0165 I 0.6270f0.0252 

0.3609f0.0410 0.3634f0.0458 0.3647f0.0527 
0.683610.0250 0.6854f0.0266 

Table 3. Simulation results of Example 3 
Objective function: J = 51 

True (normalized) AR parameters: U(-2) = 0.6271, 
U(-1) = 0.3484, ~ ( 0 )  = 0.6967, ~ ( 1 )  = 0, ~ ( 2 )  = 0 

Estimated AR Darameters (meanfstandard deviation) 

- 

p1 = 2, p2 = 0, p ;  = 2, p'z = 2 

SNR=50 
0.6346f0.0325 
0.3282f0.0440 
0.6898f0.0386 

-0.0233f0.0660 
-0.0050f0.0656 

SNR=10 
0.6546f0.0504 
0.2500f0.1092 
0.6304f0.1537 

-0.1422fO. 1652 
-0.0546f0.1297 
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